
You may have had the experience of filling out a long form on a website. For example, creating an account to make a purchase, or applying for a job, or renewing your car insurance.
A long form can lead to customers losing interest and taking their business elsewhere. Each additional field can result in up to 10% more customers dropping out instead of completing the form.

If you have a business with a form like this, one reason why you’re not able to simplify your form is because the data you are requesting is valuable.
Fast Data Science - London
There are lots of ways to address the problem, such as improving the design of the form, or splitting it across multiple pages, removing the “confirm password” field, and so on. But it appears that most fields can’t be removed without inherently degrading the data you collect on these new customers.
However with machine learning it’s possible to predict the values of some of these fields, and completely remove them from the form without sacrificing too much information. This way you gain more customers. You would need to have a history of what information customers have provided in the past, in order to remove the fields for new customers.
If you are interested and would like to know more please send us a message.
For an example of how data can be inferred from an unstructured text field please check out our forensic stylometry demo.
Looking for experts in Natural Language Processing? Post your job openings with us and find your ideal candidate today!
Post a Job
Fast Data Science will appear at Ireland’s Expert Witness Conference on 20 May 2026 in Dublin On 20 May 2026, La Touche Training is running the Expert Witness Conference 2026, at the Radisson Blu Hotel, Golden Lane, Dublin 8, Ireland. This is a full-day event combining practical workshops and interactive sessions, aimed at expert witnesses and legal professionals who want to enhance their expertise. The agenda covers critical topics like recent developments in case law, guidance on report writing, and techniques for handling cross-examination.
Guest post by Alex Nikic In the past few years, Generative AI technology has advanced rapidly, and businesses are increasingly adopting it for a variety of tasks. While GenAI excels at tasks such as document summarisation, question answering, and content generation, it lacks the ability to provide reliable forecasts for future events. GenAI models are not designed for forecasting, and along with the tendancy to hallucinate information, the output of these models should not be trusted when planning key business decisions. For more details, a previous article on our blog explores in-depth the trade-offs of GenAI vs Traditional Machine Learning approaches.

After this ruling, will tech companies move all model training to data centres that they consider “copyright safe”? Will we see a new equivalent of a “tax haven” for training AI models on copyrighted content? An “AI haven”? This article is not legal advice.
What we can do for you