How to improve conversions without losing customer data

· Thomas Wood
How to improve conversions without losing customer data

Unlock Your Future in NLP!

Dive into the world of Natural Language Processing! Explore cutting-edge NLP roles that match your skills and passions.

Explore NLP Jobs

Long forms reduce conversion rates

You may have had the experience of filling out a long form on a website. For example, creating an account to make a purchase, or applying for a job, or renewing your car insurance.

A long form can lead to customers losing interest and taking their business elsewhere. Each additional field can result in up to 10% more customers dropping out instead of completing the form.

If you have a business with a form like this, one reason why you’re not able to simplify your form is because the data you are requesting is valuable.

Fast Data Science - London

Need a business solution?

NLP, ML and data science leader since 2016 - get in touch for an NLP consulting session.

Improving user experience improves conversions

There are lots of ways to address the problem, such as improving the design of the form, or splitting it across multiple pages, removing the “confirm password” field, and so on. But it appears that most fields can’t be removed without inherently degrading the data you collect on these new customers.

However with machine learning it’s possible to predict the values of some of these fields, and completely remove them from the form without sacrificing too much information. This way you gain more customers. You would need to have a history of what information customers have provided in the past, in order to remove the fields for new customers.

How machine learning can fill in the gaps and improve conversions

  • On a small ads site, you require users to upload a photo, or fill out a description of the item they’re selling. With machine learning you can suggest a price from the description, or a title from the photo, resulting in less typing for the user.
  • On a recruitment website, you can use machine learning to deduce lots of data (name, address, salary, desired role) directly from the candidate’s CV when it’s uploaded. Even salary can be predicted although it’s not usually explicit in the CV.
  • On a car insurance website, it’s possible to retrieve make, model, car tax and insurance status from an image of the car.

If you are interested and would like to know more please send us a message.

For an example of how data can be inferred from an unstructured text field please check out our forensic stylometry demo.

Unlock Your Future in NLP!

Dive into the world of Natural Language Processing! Explore cutting-edge NLP roles that match your skills and passions.

Explore NLP Jobs

Fast Data Science and Harmony at Newspeak House on 23/01/2025
Ai in research

Fast Data Science and Harmony at Newspeak House on 23/01/2025

Tech Talk: Building AI for Good - Showcase & Meetup at Newspeak House on 23 January 2025 Fast Data Science will present the open source AI tool Harmony at the second Building AI for Good - Showcase & Meetup on 23 January 2025 organised by Newspeak House.

Fast Data Science and Harmony at Google with AI Camp on 10/12/2024
Ai in research

Fast Data Science and Harmony at Google with AI Camp on 10/12/2024

Above: video of the AICamp meetup in London on 10 December 2024. Harmony starts at 40:00 - the first talk is by Connor Leahy of Conjecture

What is an AI hackathon and how can I join one?
Ai for businessAi in research

What is an AI hackathon and how can I join one?

Image above: the winning teams and participants in the Harmony AI hackathon on 3 June 2024 AI Hackathons: A Playground for Innovation What is an AI hackathon?

What we can do for you

Transform Unstructured Data into Actionable Insights

Contact us