Clinical Trial Risk Tool

· Thomas Wood
Clinical Trial Risk Tool

We developed a tool using Natural Language Processing for a client in the pharmaceutical space to assist experts to estimate the risk of a clinical trial ending uninformatively. You can read more about it in our guest article on Clinical Leader.

Clinical trial protocols

We were contacted by the Bill and Melinda Gates Foundation, who wanted a tool to assist reviewers in quantifying the risk of a clinical trial protocol. A protocol is a document, which is often in PDF format and which may be up to 200 pages long, containing a complete description of the plan of a trial: where it will take place, how many subjects will be recruited (the sample size), which interventions are to be tested, and how the statistical analysis is to be conducted.

Risk of a trial ending uninformatively

Any organisation planning to fund a clinical trial must examine and stress-test the protocol thoroughly. The cost of running a trial is high and there are many points of potential failure. For example, if the sample size is too small, then the trial will not have sufficient statistical power to deliver an informative result and will not contribute to the body of knowledge of the funding organisation or the scientific community. This is called the risk of the trial ending uninformatively.

Protocols are written in technical English but are not constrained by any particular standard. Protocols from within a given organisation generally follow a rough pattern, but there are many ways that a particular data point can be communicated: the sample size could be referred to as the number of participantsN = 90, or the researchers could write simply we plan to enroll up to 100 subjects per site and leave it to the reader to infer the sample size.

The Gates Foundation needed an NLP model capable of quickly scanning a trial protocol and picking out key factors that could affect the risk of running the trial.

Developing the Clinical Trial Risk Tool

Over a period of more than a year, we experimented with an ensemble of machine learning and rule-based models to extract features such as the pathology, phase, sample size, number of countries, number of arms, presence or absence of a statistical analysis plan, effect size, and whether simulation had been used to determine the sample size. These parameters were put into a simple linear risk model and the tool generates a PDF or Excel report which can be shared within the organisation.

We deployed the tool to the internet at https://clinicaltrialrisk.org/tool and open-sourced the code under MIT licence.

The tool has enabled the funding organisation to assess incoming trials for rapid triage. It has also helped professionals worldwide to make a rough risk assessment of their trials before submitting them for funding.

How to cite the Clinical Trial Risk Tool?

If you would like to cite the tool alone, you can cite:

Wood TA and McNair D. Clinical Trial Risk Tool: software application using natural language processing to identify the risk of trial uninformativeness. Gates Open Res 2023, 7:56 doi: 10.12688/gatesopenres.14416.1.

A BibTeX entry for LaTeX users is

@article{Wood_2023,
	doi = {10.12688/gatesopenres.14416.1},
	url = {https://doi.org/10.12688%2Fgatesopenres.14416.1},
	year = 2023,
	month = {apr},
	publisher = {F1000 Research Ltd},
	volume = {7},
	pages = {56},
	author = {Thomas A Wood and Douglas McNair},
	title = {Clinical Trial Risk Tool: software application using natural language processing to identify the risk of trial uninformativeness},
	journal = {Gates Open Research}
}

Unlock Your Future in NLP!

Dive into the world of Natural Language Processing! Explore cutting-edge NLP roles that match your skills and passions.

Explore NLP Jobs

Can I use AI in court?
Generative ai

Can I use AI in court?

When can lawyers, litigants in person, and expert witnesses use AI in court documents? In the last few years in the UK, the USA, Canada, Ireland and other jurisdictions, cases have been reported where submissions were made to a court where the author of a document used generative AI tools such as ChatGPT to create those documents. This has wasted court time, resulted in submissions being rejected or even resulted in changes to cost awards.

Semantic leakage
Generative ai

Semantic leakage

A person has recently returned from a camping trip and has a fever. Should a doctor diagnose flu or Lyme disease? Would this be any different if they had not mentioned their camping trip? Here’s how LLMs differ from human experts.

Predicting Customer Churn using Machine Learning and AI
Data science consultingAi for business

Predicting Customer Churn using Machine Learning and AI

How can you predict customer churn using machine learning and AI? In an earlier blog post, I introduced the concept of customer churn. Here, I’d like to dive into customer churn prediction in more detail and show how we can easily and simply use AI to predict customer churn.

What we can do for you

Transform Unstructured Data into Actionable Insights

Contact us