Publication announced

· Thomas Wood
Publication announced

Our NLP research has been published in Gates Open Research!

Clinical trials are the backbone of medical progress, but a worrying trend is emerging: a large portion end without delivering useful results. This “uninformativeness” wastes valuable resources and delays advancements.

Fast Data Science is excited to announce the publication of a technical research paper the Clinical Trial Risk Tool, a game-changer in identifying potential uninformativeness at the protocol stage!

  • Wood TA and McNair D. Clinical Trial Risk Tool: software application using natural language processing to identify the risk of trial uninformativeness [version 1; peer review: 1 approved with reservations]. Gates Open Res 2023, 7:56 doi.org/10.12688/gatesopenres.14416.1

Open access natural language processing paper

Read Gates Open Research paper

Our publication is open access. Click to read online or download as PDF.

The Clinical Trial Risk Tool is a browser-based tool which uses Natural Language Processing (NLP) to analyse clinical trial protocols. Here’s how it works:

  • Drag and drop your PDF protocol: The tool reads and parses the text, automatically identifying key features of the trial design.
  • Risk assessment: These features are fed into a risk model, pinpointing areas that might lead to uninformative results.
  • User-friendly interface: Visualize the risk indicators and their locations directly in the text. You can even correct any parsing inaccuracies.
  • Detailed report: Get a PDF report summarizing the extracted key features and potential risks.

Ready to fight uninformativeness? Head over to https://clinicaltrialrisk.org/tool and access this free, open-source software.

A BibTex citation is as follows:

@article{wood2023clinical,
  title={Clinical Trial Risk Tool: software application using natural language processing to identify the risk of trial uninformativeness},
  author={Wood, Thomas A and McNair, Douglas},
  journal={Gates Open Research},
  volume={7},
  number={56},
  pages={56},
  year={2023},
  publisher={F1000 Research Limited}
}

Read more about research in AI and Fast Data Science’s publications here

Elevate Your Team with NLP Specialists

Unleash the potential of your NLP projects with the right talent. Post your job with us and attract candidates who are as passionate about natural language processing.

Hire NLP Experts

Predicting Customer Churn using Machine Learning and AI
Data science consultingAi for business

Predicting Customer Churn using Machine Learning and AI

How can you predict customer churn using machine learning and AI? In an earlier blog post, I introduced the concept of customer churn. Here, I’d like to dive into customer churn prediction in more detail and show how we can easily and simply use AI to predict customer churn.

JICL publication: A generative AI-based legal advice tool for small businesses in distress
Ai in research

JICL publication: A generative AI-based legal advice tool for small businesses in distress

A generative AI-based legal advice tool for small businesses in distress We are pleased to announce the publication of our paper A generative AI-based legal advice tool for small businesses in distress, in collaboration with an interdisciplinary team based in the UK and Hungary.

Clinical AI Interest Group at Alan Turing Institute

Clinical AI Interest Group at Alan Turing Institute

Thomas Wood presents the Clinical Trial Risk Tool before the November meeting of the Clinical AI Interest Group at Alan Turing Institute The Clinical AI Interest group is a community of health professionals from a broad range of backgrounds with an interest in Clinical AI, organised by the Alan Turing Institute.

What we can do for you

Transform Unstructured Data into Actionable Insights

Contact us