We used natural language processing to analyse clinical trial protocols. Pharma companies write a 200-page protocol at the planning stage of a clinical trial, and our model is able to ‘read’ the document and output a number of complexity metrics.

Clinical trials analysis with NLP at Boehringer Ingelheim

When a pharmaceutical company develops a drug, it needs to pass through several phases of clinical trials before it can be approved by regulators.

Before the trial is run, the drug developer writes a document called a protocol. This contains key information about how long the trial will run for, what is the risk to participants, what kind of treatment is being investigated, etc.

The problem is that each protocol is up to 200 pages long and the structure can vary.

For the German pharma company Boehringer Ingelheim, we developed and trained a deep learning tool using natural language processing (NLP) to predict more than 50 output variables from a clinical trial protocol. This allows pharma companies and regulators to analyse and quantify large numbers of clinical trial protocols, allowing more accurate cost estimation.

The technique can be extended to other industries where large unstructured or semi-structured documents are the norm.

If you have a problem of this nature please get in contact and we will be glad to discuss.

1200px Boehringer Ingelheim Logo.svg

50K employees

€15.9 billion revenue (2017)

founded in 1885

Boehringer Ingelheim – Clinical trials analysis