KI in der Pharmaindustrie

KI in der Pharmaindustrie

Wie nützlich ist KI in der Pharmaindustrie?

Es besteht ein großes Potenzial für KI, die Pharmaindustrie zu verändern und in allen Phasen des Geschäfts enorme Kosteneinsparungen zu bewirken. Wie KI im Gesundheitswesen im Allgemeinen hat auch die Einführung von maschinellem Lernen , Verarbeitung natürlicher Sprache und KI in der Pharmabranche erst vor Kurzem begonnen, und Pharmaunternehmen können bereits erste hohe Erträge aus der Anfangsinvestition erzielen. Bei Fast Data Science sind wir auf die Anwendung natürlicher Sprachverarbeitung und KI auf Probleme in der Pharma- und Gesundheitsbranche spezialisiert. Um mehr zu erfahren, lesen Sie weiter oder nehmen Sie Kontakt mit uns auf .

KI und ML in der Pharmaindustrie für die Arzneimittelentwicklung

Traditionelle Arzneimittelentdeckung vor der künstlichen Intelligenz

Die erste Phase der Arzneimittelentwicklung ist die Arzneimittelforschungsphase , in der mögliche Wirkstoffe entdeckt werden, bevor sie am Menschen getestet werden. In der Vergangenheit wurden mögliche Medikamente durch die Identifizierung des Wirkstoffs in traditionellen Heilmitteln entdeckt. Beispielsweise isolierten Chemiker im 19. Jahrhundert Salicylsäure aus der Rinde der Weide, die lange Zeit als Volksheilmittel zur Behandlung von Kopfschmerzen eingesetzt wurde. Sie wurde zur Grundlage von Aspirin, das heute weit verbreitet ist. Heutzutage umfasst die Arzneimittelforschung das Screening von Millionen von Molekülen , wobei zunächst hochentwickelte Computerprogramme eingesetzt werden, um die Wechselwirkung der Moleküle mit Zielen im menschlichen Körper zu simulieren. Forscher simulierten Molekülwechselwirkungen mithilfe einer Software, die mit den Regeln der Physik und Chemie vorprogrammiert war. In letzter Zeit gibt es jedoch einen Trend, maschinelles Lernen in der Pharmaindustrie zu nutzen, um zu lernen, welche Art von Proteinen mit welchen Zielen interagieren, und um auf neue, unbekannte Moleküle zu verallgemeinern, die noch nicht synthetisiert wurden.

Faltungs-Neuronale Netze für die Arzneimittelentwicklung

Im Jahr 2015 entwickelte das in San Francisco ansässige Startup Atomwise einen auf einem Faltungs-Neuronalen Netzwerk basierenden Algorithmus namens AtomNet , dem ein Datensatz beobachteter Wechselwirkungen zwischen Molekülen zur Verfügung gestellt wurde und der in der Lage war, einige Regeln der organischen Chemie zu erlernen, ohne explizit unterrichtet zu werden. Atomwise nutzte AtomNet, um Spitzenkandidaten für Arzneimittelforschungsprogramme zu identifizieren, und identifizierte anschließend einen Kandidaten im Kampf gegen das Ebola-Virus, der später in präklinische Studien überging.

A classic use of AI in pharma: Some annotated texts in the DDI corpus used in the DDIExtraction Challenge, showing tagged drug-drug interactions which can be used to train [machine learning](/machine-learning-consulting) [algorithms](https://harmonydata.ac.uk/measuring-the-performance-of-nlp-algorithms). Image source: Segura-Bedmar et al (2014)

Fast Data Science - London

Need a business solution?

NLP , ML und Data Science Leader seit 2016 – kontaktieren Sie uns für eine NLP- Beratungssitzung.

Einige kommentierte Texte im DDI-Korpus, die in der DDIExtraction Challenge verwendet werden und markierte Arzneimittel-Wechselwirkungen zeigen, die zum Trainieren von Algorithmen für maschinelles Lernen in der Pharmaindustrie verwendet werden können. Bildquelle: Segura-Bedmar et al. (2014)

Verarbeitung natürlicher Sprache für die Pharmaliteraturrecherche

Bei Fast Data Science haben wir an einem Projekt für Boehringer Ingelheim gearbeitet, bei dem das Unternehmen eine Reihe proprietärer Moleküle als Open-Source-Lösung bereitgestellt hat. Den Forschern steht es frei, Proben der betreffenden Verbindungen zu bestellen, und die Molekülstruktur wird online und in der Literatur veröffentlicht.

Das Unternehmen war daran interessiert, Veröffentlichungen zu verfolgen, in denen die Autoren Boehringer-Moleküle verwendet haben, unabhängig davon, ob Boehringer zitiert wird oder nicht, um neue Entwicklungen zu verfolgen, die sich aus den Entdeckungen ergeben, und mögliche zukünftige Kooperationen zu identifizieren. Fast Data Science hat einen maßgeschneiderten Algorithmus zur Verarbeitung natürlicher Sprache entwickelt, um Kooperationen und Erwähnungen von Molekülen zu verfolgen und sie dem Arzneimittelforschungsteam zu melden, selbst wenn eine Variante des Molekülnamens verwendet wird.

Arzneimittelinteraktionen mit NLP und KI in der Pharmaindustrie

Es gibt viele mögliche Kombinationen potenzieller Wechselwirkungen zwischen Arzneimitteln und es ist eine arbeitsintensive Aufgabe, die medizinische Fachliteratur durchzulesen, um sie zu identifizieren. Das Risiko von Nebenwirkungen durch Arzneimittelwechselwirkungen steigt erheblich, wenn ein Patient mehrere Rezepte einnimmt.

Deep-Learning- und Text-Mining- Algorithmen wurden verwendet, um die gesamte wissenschaftliche Literatur zu verarbeiten und Kandidateninteraktionen und ihre möglichen Auswirkungen zu identifizieren. Forscher, die Algorithmen für diesen Zweck entwickeln, verwenden die DDIExtraction Challenge als standardisierten Test für Algorithmen, die Wechselwirkungen zwischen Medikamenten identifizieren, und jedes Jahr verbessern neue Deep-Learning- Algorithmen die Spitzenpunktzahl bei dieser Metrik.

Identifizierung von Wirkstoffzielen mit KI in der Pharmaindustrie

Ein herausfordernder Teil der Arzneimittelentwicklung ist das Problem der Identifizierung von Zielen für die Arzneimittelentwicklung. Zielmoleküle für Medikamente sind Moleküle im Körper, die mit einer bestimmten Krankheit in Zusammenhang stehen. Wenn das Angriffsziel des Arzneimittels identifiziert ist, ist es möglich, nach Kandidatenmolekülen zu suchen, die wahrscheinlich mit diesem Ziel interagieren und die Krankheit hemmen.

AI in pharma can be used to identify drugs to treat pancreatic cancer
Der Kandidat für ein Medikament gegen Bauchspeicheldrüsenkrebs, BPM31510, wurde von Berg mithilfe der KI-Wirkstoffforschung entwickelt. Mit diesem Ansatz konnte Berg einen Medikamentenkandidaten namens BPM31510 herstellen, dessen Phase-2-Studien kürzlich zur Behandlung von Bauchspeicheldrüsenkrebs im Spätstadium abgeschlossen wurden. Die Weiterentwicklung des Wirkstoffs von in silico zu in vitro war ein bahnbrechender Triumph für KI in der Pharmaindustrie.

Neuronales Netzwerk zur Entdeckung von Wirkstoffzielen

Das Biopharmaunternehmen Berg hat einen Deep-Learning- Ansatz verwendet, um Wirkstoffziele zu identifizieren. Sie haben eine Reihe von Gewebeproben von Patienten mit und ohne eine bestimmte Krankheit entnommen und die Gewebe einer Reihe von Medikamenten und Bedingungen ausgesetzt. Die Reaktion des Gewebes wird aufgezeichnet und in einen Deep-Learning- Algorithmus eingespeist, der nach möglichen Veränderungen im Krankheitszustand sucht, die zu Kandidatenproteinen führen, die möglicherweise mit der Krankheit in Zusammenhang stehen. Das Projekt machte das Potenzial von KI in der Pharmaindustrie öffentlich zugänglich.

Verarbeitung natürlicher Sprache für Protokolle klinischer Studien

Sobald Kandidatenmedikamente identifiziert wurden, wird das Pharmaunternehmen mit klinischen Studien fortfahren, bevor das Medikament zugelassen werden kann. In Phase-0-Studien werden die Medikamente an einer kleinen Anzahl von Menschen getestet, um zu verstehen, wie sie sich auf den Körper auswirken. In Phase-I-Studien wird das Medikament an 15 bis 30 Patienten verabreicht, um mögliche Nebenwirkungen zu verstehen. Dies führt zu Phase-II-Studien, in denen untersucht wird, ob das Medikament eine Wirkung auf die Krankheit hat, und Phase-III-Studien, an denen mehr als 100 Patienten beteiligt sind und die einen Vergleich mit bestehenden Medikamenten beinhalten.

Im Jahr 2020 belaufen sich die durchschnittlichen Kosten für die Markteinführung eines neuen Arzneimittels auf 1,3 Milliarden US-Dollar. Selbst dann schafft es nur ein kleiner Teil der Medikamente im Phase-I-Stadium bis zur Phase III und zur Zulassung. Wenn eine klinische Studie durchgeführt wird, muss das Pharmaunternehmen einen detaillierten Plan für die Studie erstellen, normalerweise ein 200-seitiges PDF-Dokument mit redigierten vertraulichen Informationen, und es an eine Datenbank wie Clinicaltrials.gov übermitteln.

Bei Fast Data Science haben wir ein Faltungs-Neuronales Netzwerk entwickelt, um klinische Studienprotokolle für Boehringer Ingelheim zu verarbeiten und verschiedene Komplexitätsmetriken vorherzusagen, die es dem Pharmaunternehmen ermöglichen, die Kosten für die Durchführung der Studie zu berechnen. Das neuronale Netzwerk kann einen von einem beliebigen Pharmaunternehmen verfassten Bericht in einfachem Englisch lesen und eine Reihe quantitativer Messwerte in Bezug auf die Komplexität der Studie erstellen. Dadurch kann das Unternehmen die Kosten im Voraus abschätzen und Versuche planen, um sowohl Kosten als auch Risiken zu reduzieren.

Verweise
Lim et al., Extraktion von Arzneimittelwechselwirkungen aus der Literatur mithilfe eines rekursiven neuronalen Netzwerks , PLoS ONE (2018)
Freedman, Mit KI auf der Suche nach neuen Medikamenten , Scientific American (2020)
Segura-Bedmar et al., Lehren aus der gemeinsamen Aufgabe DDIExtraction-2013 (2014)

What we can do for you

Transform Unstructured Data into Actionable Insights

Contact us