Natural language processing (NLP) is revolutionising how businesses interact with information. But large language models, or LLMs (also known as generative models or GenAI) can sometimes struggle with factual accuracy and keeping up with real-time information.
If ChatGPT was trained on data until a certain year, how can it answer questions about events that happened after the cutoff point?
Retrieval-augmented generation (RAG) allows LLMs such as ChatGPT to stay up to date in their responses.
Natural language processing
Remember the old mobile phones which completed a sentence by taking into account the previous words? That’s all the LLMs are doing.
An LLM is a super-powered autocomplete. It excels at understanding language patterns but can lack domain-specific knowledge. LLMs are notorious for hallucinating when they don’t know the answer.
We can mitigate the problem of hallucinations and inaccuracies by taking the user prompt, and leveraging an external knowledge base and prepending or appending some useful information which we think the LLM should know, before we pass the prompt to the LLM. For example, if the user has a query about English insolvency law, we can send the user’s original question, together with some relevant information retrieved from a database.
Modifying the prompt sent to an LLM is also called prompt engineering.
With RAG, we augment the request by retrieving relevant documents from the knowledge base and feeding them to the LLM along with the original prompt. This empowers the LLM to generate more accurate and up-to-date responses.
A demonstration of the Insolvency Bot, a use case of RAG (retrieval augmented generation) in the legal domain.
Here’s how RAG and prompt engineering can benefit businesses:
Real-world applications of retrieval augmented generation
The Future of NLP
RAG represents a significant step forward in NLP. By combining the power of LLMs with external knowledge, businesses can unlock new levels of efficiency, accuracy, and cost-effectiveness in information retrieval. As technology evolves, RAG is poised to play a central role in the future of human-computer interaction.
Unleash the potential of your NLP projects with the right talent. Post your job with us and attract candidates who are as passionate about natural language processing.
Hire NLP ExpertsWhat is generative AI consulting? We have been taking on data science engagements for a number of years. Our main focus has always been textual data, so we have an arsenal of traditional natural language processing techniques to tackle any problem a client could throw at us.
Listen to the new episode of the Clinical Trial Files podcast, where Karin Avila, Taymeyah Al-Toubah and Thomas Wood of Fast Data Science chat about AI and NLP in pharma, the Clinical Trial Risk Tool, what impact AI can make in clinical trials. This episode commemorates Alan Turing’s 113rd birthday on 23 June 2025.
Fast Data Science at will be presenting at the 4th Annual Conference on the Intersection of Corporate Law and Technology at Nottingham Trent University Join Thomas Wood of Fast Data Science, Marton Ribary and Eugenio Vaccari for their presentation “A Generative AI-Based Legal Advice Tool for Small Businesses in Distress” at the 4th Annual Conference on the Intersection of Corporate Law and Technology at Nottingham Trent University
What we can do for you