How forensic stylometry can identify the author of a document

· Thomas Wood
How forensic stylometry can identify the author of a document

Click here to see a live online demo of the neural network forensic stylometry model described in this article.

In 2013 JK Rowling, the author of the Harry Potter series, published a new detective novel under the pen name Robert Galbraith. She wanted to publish a book without the hype resulting from the success of the Harry Potter books.

However, following a tip-off received by a journalist on Twitter, two professors of computational linguistics showed that JK Rowling was highly likely to be the author of the new detective novel.

Fast Data Science - London

Need a business solution?

NLP, ML and data science leader since 2016 - get in touch for an NLP consulting session.

How did they manage to do this? Needless to say, the crime novel is set in a strictly non-magical world, and superficially it has little in common with the famous wizarding series.

One of the professors involved in the analysis said that he calculates a “fingerprint” of all the authors he’s interested in, which shows the typical patterns in that author’s works.

What’s my linguistic fingerprint? Subconsciously we tend to favour some word patterns over others. Is your salad fork “on” the left of the plate, or “to” the left of the plate? Do you favour long words, or short words? By comparing the fingerprint of a mystery novel to the fingerprints of some known authors it’s possible to get a match.

Here are some (partial) fingerprints I made for three well known female authors who used male pen names:

Identifying the author of a text is a field of computational linguistics called forensic stylometry.

With the advent of ‘deep learning’ software and computing power, forensic stylometry has become much easier. You don’t need to define the recipe for your fingerprint anymore, you just need lots of data.

My favourite way of approaching this problem is a Convolutional Neural Network, which is a deep learning technique that was developed for recognising photos but works very well for natural language!

The technology I’ve described has lots of commercial applications, such as

  • Identifying the author of a terrorist pamphlet
  • Extracting information from company financial reports
  • Identifying spam emails, adverts, job postings
  • Triage of incoming emails
  • Analysis of legal precedents in a Common Law system

If you have a business problem in this area and you’d like some help developing and deploying, or just some consulting advice, please get in touch with me via the contact form.

On 5th July 2018 I will be running a workshop on forensic stylometry aimed at beginners and programmers, at the Digital Humanities Summer School at Oxford University. You can sign up here: http://www.dhoxss.net/from-text-to-tech.

Update: click here to download the presentation from the workshop.

Unlock Your Future in NLP!

Dive into the world of Natural Language Processing! Explore cutting-edge NLP roles that match your skills and passions.

Explore NLP Jobs

Clinical AI Interest Group at Alan Turing Institute

Clinical AI Interest Group at Alan Turing Institute

Thomas Wood presents the Clinical Trial Risk Tool before the November meeting of the Clinical AI Interest Group at Alan Turing Institute The Clinical AI Interest group is a community of health professionals from a broad range of backgrounds with an interest in Clinical AI, organised by the Alan Turing Institute.

Fast Data Science at Ireland's Expert Witness Conference on 20 May 2026
Legal aiGenerative ai

Fast Data Science at Ireland's Expert Witness Conference on 20 May 2026

Fast Data Science will appear at Ireland’s Expert Witness Conference on 20 May 2026 in Dublin On 20 May 2026, La Touche Training is running the Expert Witness Conference 2026, at the Radisson Blu Hotel, Golden Lane, Dublin 8, Ireland. This is a full-day event combining practical workshops and interactive sessions, aimed at expert witnesses and legal professionals who want to enhance their expertise. The agenda covers critical topics like recent developments in case law, guidance on report writing, and techniques for handling cross-examination.

Using Natural Language Processing (NLP) to predict the future
Ai for businessNatural language processing

Using Natural Language Processing (NLP) to predict the future

Guest post by Alex Nikic In the past few years, Generative AI technology has advanced rapidly, and businesses are increasingly adopting it for a variety of tasks. While GenAI excels at tasks such as document summarisation, question answering, and content generation, it lacks the ability to provide reliable forecasts for future events. GenAI models are not designed for forecasting, and along with the tendancy to hallucinate information, the output of these models should not be trusted when planning key business decisions. For more details, a previous article on our blog explores in-depth the trade-offs of GenAI vs Traditional Machine Learning approaches.

What we can do for you

Transform Unstructured Data into Actionable Insights

Contact us